ATOMIC ENERGY EDUCATION SOCIETY, MUMBAI

CLASS: XII(MATHS) HANDOUT: MODULE 3/4 **CHAPTER-5 TOPIC: CONTINUITY AND DIFFERENTIABILITY**

1) PROPERTIES OF LOGARITHMS

$\log mn = \log m \pm \log n$	\square log $\left(\frac{m}{m}\right) = \log m - \log n$
• $\log_a mn = \log_a m + \log_a n$	$\blacksquare \log_a\left(\frac{1}{n}\right) = \log_a m = \log_a n$
• $\log_a m^n = n \log_a m$	$\Box \log_a m = \frac{\log_b m}{\log_b a}$
Some Standard Derivatives	05
(i) $\frac{d}{dx}(\sin x) = \cos x$	(ii) $\frac{d}{dx}(\cos x) = -\sin x$
(iii) $\frac{d}{dx}(\tan x) = \sec^2 x$	(iv) $\frac{d}{dx}(\sec x) = \sec x \tan x$
(v) $\frac{d}{dx}(\operatorname{cosec} x) = -\operatorname{cosec} x \cot x$	(vi) $\frac{d}{dx}(\cot x) = -\csc^2 x$
(vii) $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$	(viii) $\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$
(ix) $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$	(x) $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - x^2}}$
(xi) $\frac{d}{dx}(\csc^{-1}x) = \frac{-1}{x\sqrt{x^2 - 1}}$	(xii) $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$
(xiii) $\frac{d}{dx}(x^n) = nx^{n-1}$	(xiv) $\frac{d}{dx}$ (constant) = 0
$(xv) \frac{d}{dx}(e^x) = e^x$	(xvi) $\frac{d}{dx}(\log_e x) = \frac{1}{x}, x > 0$
(xvii) $\frac{d}{dx}(a^x) = a^x \log_e a, a > 0$	

2) LOGARITHMIC DIFFERENTIATION

If the given function is a (function)^{function} or product or quotient of many functions we use logarithmic differentiation.

Let
$$y = f(x)^{\varphi(x)}$$
. Taking logarithm (with base e) on both sides
 $\log y = \log f(x)^{\varphi(x)}$
 $\log y = \varphi(x) \log f(x)$. Differentiating both sides w.r.to x
 $\frac{d(\log y)}{dx} = \frac{d(\varphi(x) \log f(x))}{dx}$
 $\frac{1}{y} \frac{dy}{dx} = \varphi(x) \frac{1}{f(x)} f'(x) + \log f(x) \varphi'(x)$
 $\therefore \frac{dy}{dx} = y (\varphi(x) \frac{1}{f(x)} f'(x) + \log f(x) \varphi'(x))$

Here f(x) and $\varphi(x)$ must always be positive as otherwise their logarithms are not defined
